In recent years, Machine learning (ML) techniques developed for Natural Language Processing (NLP) have permeated into developing better computer vision algorithms. In this work, we use such NLP-inspired techniques to improve the accuracy, robustness and generalizability of ML models for simulating transient dynamics. We introduce teacher forcing and curriculum learning based training mechanics to model vortical flows and show an enhancement in accuracy for ML models, such as FNO and UNet by more than 50%.
translated by 谷歌翻译
在随机上下文的强盗设置中,对遗憾最小化算法进行了广泛的研究,但是他们的实例最少的最佳武器识别对应物仍然很少研究。在这项工作中,我们将重点关注$(\ epsilon,\ delta)$ - $ \ textit {pac} $设置:给定策略类$ \ pi $,学习者的目标是返回策略的目标, $ \ pi \ in \ pi $的预期奖励在最佳政策的$ \ epsilon $之内,概率大于$ 1- \ delta $。我们表征了第一个$ \ textit {实例依赖性} $ PAC样品通过数量$ \ rho _ {\ pi} $的上下文匪徒的复杂性,并根据$ \ rho _ {\ pi} $提供匹配的上和下限不可知论和线性上下文最佳武器标识设置。我们表明,对于遗憾的最小化和实例依赖性PAC而言,无法同时最小化算法。我们的主要结果是一种新的实例 - 最佳和计算有效算法,该算法依赖于多项式呼叫对Argmax Oracle的调用。
translated by 谷歌翻译
积极的学习方法在减少学习所需的样本数量方面表现出了巨大的希望。随着自动化学习系统被采用到实时的现实世界决策管道中,越来越重要的是,这种算法的设计考虑到了安全性。在这项工作中,我们研究了在互动环境中学习最佳安全决定的复杂性。我们将这个问题减少到约束的线性匪徒问题,我们的目标是找到满足某些(未知)安全限制的最佳手臂。我们提出了一种基于自适应的实验性设计算法,在显示ARM的难度与次优的难度之间,我们表现出了有效的交易。据我们所知,我们的结果是具有安全限制的线性匪徒最佳武器识别。实际上,我们证明了这种方法在合成和现实世界数据集上的表现很好。
translated by 谷歌翻译
网络世界中的信息安全是令人关切的主要原因,攻击表面的数量显着增加。网络上可用的漏洞,攻击,控件和建议的现有信息提供了代表知识并执行安全分析以减轻一些问题的机会。代表本体形式的安全知识有助于异常检测,威胁情报,推理和相关攻击的相关性归因等。这需要动态和自动丰富信息安全本体。然而,基于自然语言处理和ML模型的现有本体富集算法具有语文提取词,短语和句子的上下文提取问题。这激励了对遍历文本中的依赖路径的顺序深度学习架构的需求,并提取嵌入漏洞,威胁,控件,产品和其他安全相关概念和来自学习的路径表示的实例。在所提出的方法中,部署了在大型DBPedia数据集和Wikipedia语料库上培训的双向LSTMS与Universal Stank编码器一起培训,以丰富基于ISO 27001的信息安全本体。该模型在高性能计算(HPC)环境上进行培训并测试,以处理Wiki文本维度。当从本体论和网页实例的敲除概念测试以验证稳健性时,该方法产生了超过80%的测试精度。
translated by 谷歌翻译
级别设置估计问题旨在查找域$ {\ cal x} $的所有点,其中一个未知函数$ f:{\ cal x} \ lightarrow \ mathbb {r} $超过阈值$ \ alpha $ 。估计基于可以在$ {\ cal x} $中顺序和自适应地选择的位置获取的嘈杂函数评估。阈值$ \ alpha $可以是\弹性{显式},并提供先验,或\ \ ich {隐式},相对于最佳函数值定义,即$ \ alpha =(1- \ epsilon)f(x_ \ AST)$关于给定$ \ epsilon> 0 $ why $ f(x_ \ ist)$是最大函数值,并且未知。在这项工作中,我们通过将其与最近的自适应实验设计方法相关联,为近期自适应实验设计方法提供了一种新的再现内核盗窃空间(RKHS)设置。我们假设可以通过RKHS中的函数近似于未知的拼写,并为此设置中隐含和显式案件提供新的算法,具有很强的理论保证。此外,在线性(内核)设置中,我们表明我们的界限几乎是最佳的,即,我们的上限与阈值线性匪徒的现有下限匹配。据我们所知,这项工作提供了第一个实例依赖性非渐近的上限,就匹配信息理论下限的水平设定估计的样本复杂性。
translated by 谷歌翻译
这项工作考虑了最佳手臂识别的选择性采样问题。给定一组潜在选项$ \ mathcal {z} \ subset \ mathbb {r} ^ d $,学习者旨在计算概率大于1- \ delta $,$ \ arg \ max_ {z \ mathcal { z}} z ^ {\ top} \ theta _ {\ ast} $ where $ \ theta _ {\ art} $未知。在每个时间步骤中,潜在的测量$ x_t \ in \ mathcal {x} \ subset \ mathbb {r} ^ d $被绘制的iid,学习者可以选择采取测量,在这种情况下,他们观察到嘈杂的测量$ x ^ {\ top} \ theta _ {\ ast} $,或弃权采取测量并等待可能更多的信息点到达流。因此,学习者在他们采取的标签样本数量之间面临的基本折衷,并且当他们收集足够的证据来宣布最好的手臂并停止抽样时。这项工作的主要结果精确地表征了标记的样本和停止时间之间的这种权衡,并提供了一种算法,几乎最佳地实现了给出所需停止时间的最小标签复杂性。此外,我们表明最佳决策规则具有基于决定点是否处于椭圆形的简单几何形式。最后,我们的框架足以捕获先前作品的二进制分类。
translated by 谷歌翻译
这项工作提出了一种为特定的自适应数据收集任务设计算法,如活动学习和纯探索多武装匪徒。与传统自适应算法的设计不同,依靠测量浓度和仔细分析来证明程序的正确性和样本复杂性,通过对来自信息理论下限的等效类别的等效类别的对抗训练来学习我们的自适应算法。特别地,学习了单个自适应学习算法,以为每个等价类的最佳自适应算法竞争。我们的程序只需输入可用查询,假设,丢失函数集和全查询预算集。这与现有的元学习工作相反,用于了解相对于显式,用户定义的子集或先前分布的自适应算法,这些工作是可能具有具有挑战性的问题,以便定义和不匹配到测试时间遇到的实例。当总查询预算非常小时,这项工作特别专注于制度,例如几十个,这远小于理论上衍生算法通常考虑的预算。我们执行合成实验,以证明培训程序的稳定性和有效性,然后评估来自实际数据的任务方法,包括嘈杂的20个问题游戏和一个笑话推荐任务。
translated by 谷歌翻译